TOSHIBA Bipolar Digital Integrated Circuit Silicon Monolithic

ULN2003AP,ULN2003AFW,ULN2004AP,ULN2004AFW (Manufactured by Toshiba Malaysia)

Designation

TTL, 5 V CMOS

6~15 V PMOS, CMOS

7ch Darlington Sink Driver

The ULN2003AP/AFW Series are high–voltage, high–current darlington drivers comprised of seven NPN darlington pairs. All units feature integral clamp diodes for switching inductive loads.

Applications include relay, hammer, lamp and display (LED) drivers.

Input Base

Resistor

2.7 kΩ

10.5 kΩ

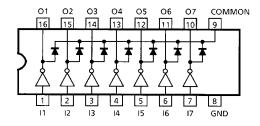
Features

- Output current (single output): 500 mA max
- High sustaining voltage output: 50 V min
- Output clamp diodes
- Inputs compatible with various types of logic
- Package Type-AP: DIP-16pin

Туре

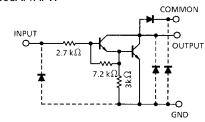
ULN2003AP/AFW

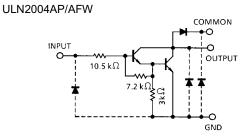
ULN2004AP/AFW


• Package Type-AFW: SOL-16pin

ULN2003AP ULN2004AP			
REPAPTIAN			
DIP16-P-300-2.54A			
ULN2003AFW ULN2004AFW			
ARAMAN			
SOL16-P-150-1.27A			
Woight			

Weight


DIP16-P-300-2.54A : 1.11 g (typ.) SOL16-P-150-1.27A: 0.15 g (typ.)


Pin Connection (top view)

Schematics (each driver)

ULN2003AP/AFW

Note: The input and output parasitic diodes cannot be used as clamp diodes.

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit		
Output Sustaining Voltage		V _{CE (SUS)}	-0.5~50	V	
Output Current		IOUT	500	mA/ch	
Input Voltage		V _{IN}	-0.5~30	V	
Clamp Diode Reverse Voltage		V _R	50	V	
Clamp Diode Forward Curr	rent	lF	500	mA	
Davies Dia sin ati an	AP	D-	1.47	W	
Power Dissipation	AFW	PD	1.25 (Note)		
Operating Temperature		T _{opr}	-40~85	°C	
Storage Temperature	T _{stg}	-55~150	°C		

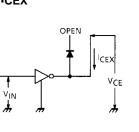
Note: On PCB (Test Board: JEDEC 2s2p)

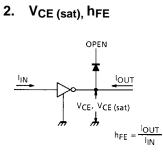
Recommended Operating Conditions (Ta = -40 to 85° C)

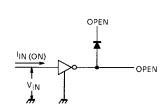
Charao	cteristic	Symbol	Test Condition		Min	Тур.	Max	Unit
Output sustaining voltage		V _{CE (SUS)}			0	_	50	V
Output current	AP		$T_{pw} = 25 \text{ ms}$ 7 Circuits Ta = 85°C T _j = 120°C	Duty = 10%	0	_	350	mA/ch
				Duty = 50%	0	_	100	
	AFW	lout		Duty = 10%	0	_	300	
				Duty = 50%	0	_	90	
Input voltage		V _{IN}			0	_	24	V
Input voltage	ULN2003A		l _{OUT} = 400 mA h _{FE} = 800		2.8	_	24	v
(output on)	ULN2004A	V _{IN (ON)}			6.2	_	24	
Input voltage (output off) ULN2003A ULN2004A	M			0	_	0.7	v	
	ULN2004A	V _{IN (OFF)}			0	_	1.0	v
Clamp diode revers	se voltage	V _R			_	_	50	V
Clamp diode forward current		١ _F			_	_	350	mA
Power dissipation	AP		Ta = 85°C		—	_	0.76	14/
	AFW	P _D	Ta = 85°C	(Note	e) —	_	0.65	W

Note: On PCB (Test Board: JEDEC 2s2p)

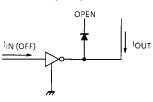
Electrical Characteristics (Ta = 25°C unless otherwise noted)

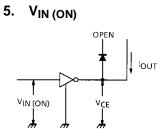

Character	ristic	Symbol	Test Circuit			Min	Тур.	Max	Unit
			1	V _{CE} = 50 V, Ta = 25°C		_		50	μA
Output leakage current		ICEX		V _{CE} = 50 V, Ta = 85°C		_		100	
Collector-emitter saturation voltage		V _{CE (sat)}	2	$I_{OUT} = 350$ mA, $I_{IN} = 500 \ \mu\text{A}$		_	1.3	1.6	v
				$I_{OUT} = 200 \text{ mA}, I_{IN} = 350 \mu\text{A}$		_	1.1	1.3	
				$I_{OUT} = 100 \text{ mA}, I_{IN} = 250 \ \mu\text{A}$		_	0.9	1.1	
DC Current transfer ratio		h _{FE}	2	V _{CE} = 2 V, I _{OUT} = 350 mA		1000	_	_	
Input current	ULN2003A		3	V _{IN} = 2.4 V, I _{OUT} = 350 mA		_	0.4	0.7	mA
(output on)	ULN2004A	IIN (ON)	3	$V_{IN} = 9.5 \text{ V}, \ I_{OUT} = 350 \text{ mA}$		_	0.8	1.2	
Input current (output off)		I _{IN (OFF)}	4	I _{OUT} = 500 μA, Ta = 85°C		50	65	_	μA
Input voltage (output on)	ULN2003A ULN2004A	Vin (on)	5		$I_{OUT} = 350 \text{ mA}$	_	_	2.6	V
				5 V _{CE} = 2 V h _{FE} = 800	$I_{OUT} = 200 \text{ mA}$	_	_	2.0	
					$I_{OUT} = 350 \text{ mA}$	_	_	4.7	
					$I_{OUT} = 200 \text{ mA}$	_	_	4.4	
Clamp diode reverse current		I _R	6	$V_R = 50 V$, Ta = 25°C		_		50	μA
				$V_{R} = 50 V, Ta = 85^{\circ}C$		_	—	100	μΛ
Clamp diode forward voltage		V _F	7	I _F = 350 mA		_		2.0	V
Input capacitance		C _{IN}	_			_	15	_	pF
Turn-on delay		ton	8	$\begin{array}{l} V_{OUT}=50 \text{ V}, \text{ R}_{L}=125 \ \Omega \\ \text{C}_{L}=15 \ \text{pF} \end{array}$		_	0.1	_	μS
Turn−off delay	toff 8 $V_{OUT} = 50 \text{ V}, \text{ R}_{L} = 125 \Omega$ $C_{L} = 15 \text{ pF}$		_	0.2	_	μο			

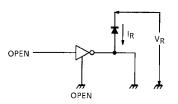

<u>TOSHIBA</u>


Test Circuit

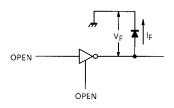
OPEN-

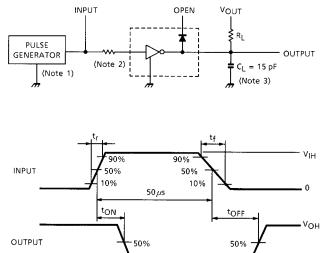





3. I_{IN (ON)}

6. I_R





7. V_F

TOSHIBA

8. t_{ON}, t_{OFF}

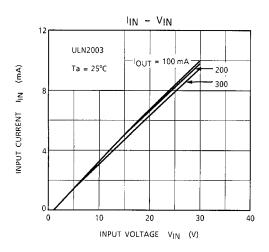
- ______v_{ol}
- Note 1: Pulse width 50 $\mu s,$ duty cycle 10% $Output \ impedance \ 50 \ \Omega, \ t_r \le 5 \ ns, \ t_f \le 10 \ ns$
- Note 2: See below

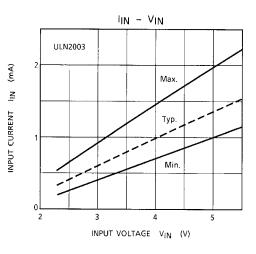
Input Condition

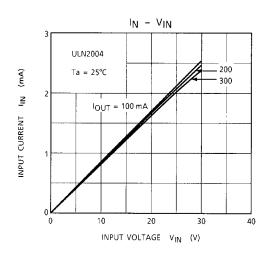
Type Number	R1	VIH
ULN2003AP/AFW	0	3 V
ULN2004AP/AFW	0	8 V

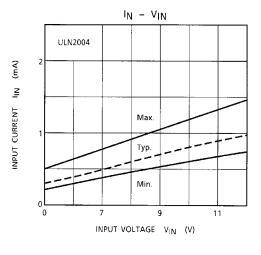
Note 3: C_L includes probe and jig capacitance.

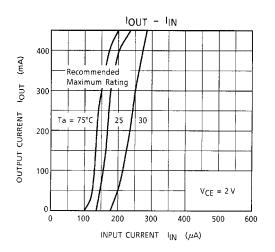
Precautions for Using

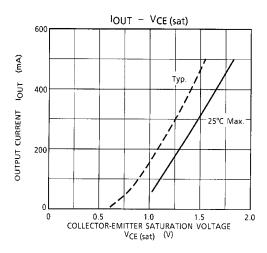

This IC does not include built-in protection circuits for excess current or overvoltage.

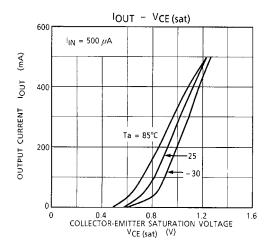

If this IC is subjected to excess current or overvoltage, it may be destroyed.

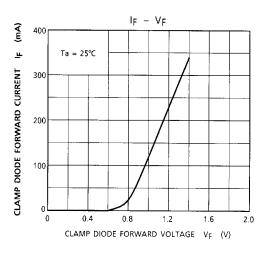

Hence, the utmost care must be taken when systems which incorporate this IC are designed.

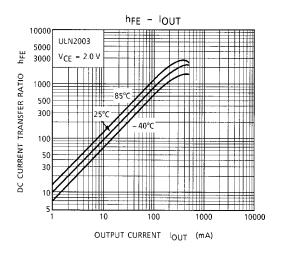

Utmost care is necessary in the design of the output line, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

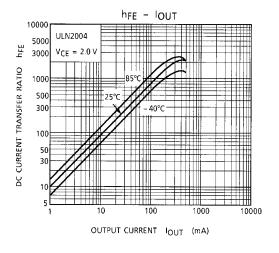

TOSHIBA

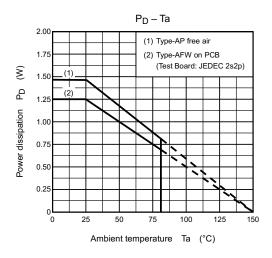


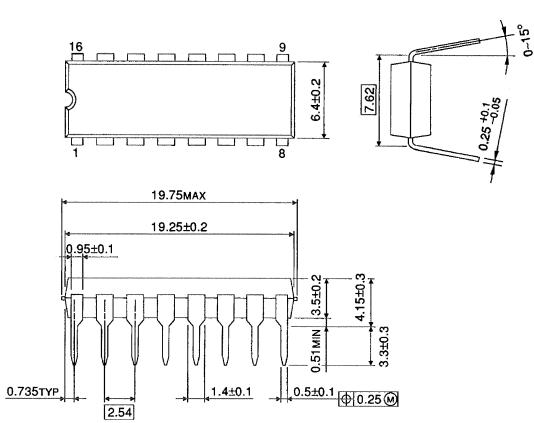








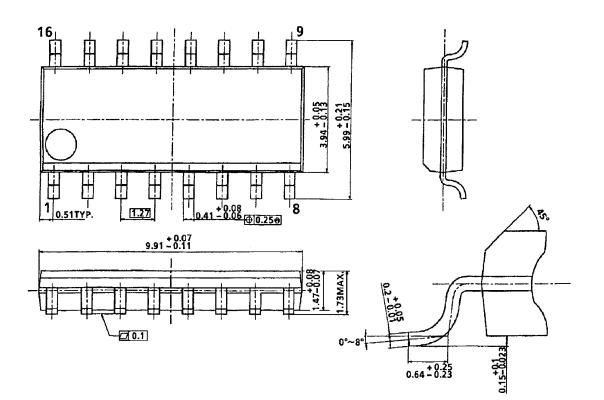




Package Dimensions

DIP16-P-300-2.54A

Unit : mm



Weight: 1.11 g (typ.)

Package Dimensions

SOL16-P-150-1.27A

Unit : mm

Weight: 0.15 g (typ.)

RESTRICTIONS ON PRODUCT USE

030519EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.