

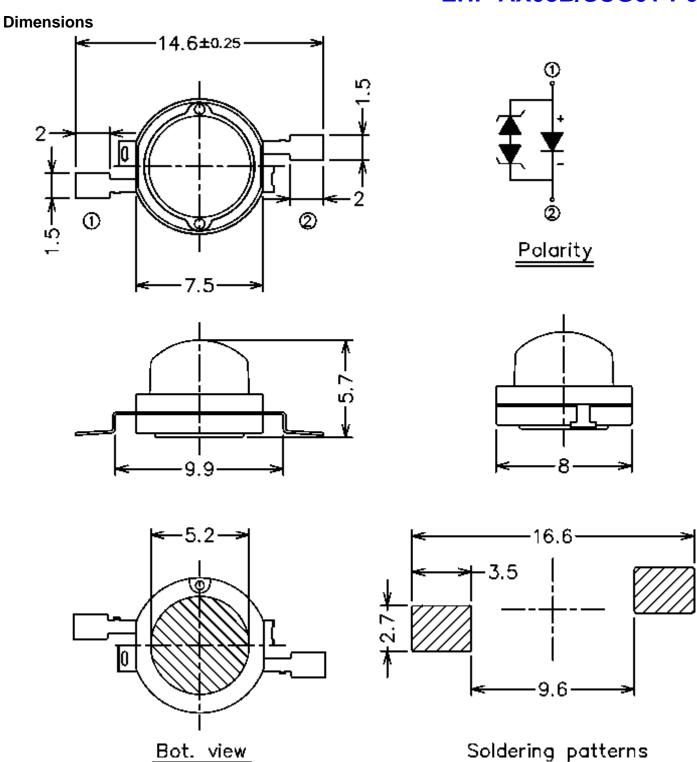
Technical Data Sheet High Power LED – 1W

EHP-AX08B/SUG01-P01

Features

- Feature of the device: small package with high efficiency
- Typical view angle: 100°.
- Typical light flux output: 53 lm @ 350mA.
- ESD protection.
- Soldering methods: Hot bar soldering.
- Grouping parameter: total luminous flux, dominant wavelength
- Typical optical efficiency: 41 lm/W.
- Thermal resistance (junction to lead): 15 K/W.
- The product itself will remain within RoHS compliant version

- TFT LCD display backlight
- Decorative and entertainment illumination
- Signal and symbol luminaries for orientation marker lights (e.g. steps, exit ways, etc.)
- Exterior and interior automotive illumination



Items	Description	
Housing black body	Heat resistant polymer	
Encapsulating Resin	Silicone resin	
Lens	Heat resistant clear polymer	
Electrodes	Ag plating copper alloy	
Die attach	Silver paste	
Chip	InGaN	

Everlight Electronics Co., Ltd. http://www.everlight.com Rev. 1.0 Page: 1 of 10

EHP-AX08B/SUG01-P01

Notes: 1. Dimensions are in millimeters.

2. Tolerances unless dimensions ±0.25mm.

Everlight Electronics Co., Ltd. Device No.

http://www.everlight.com Prepared date: Mar 11, 2008 Rev. 1.0

Page: 2 of 10

EHP-AX08B/SUG01-P01

Maximum Ratings (T Ambient=25°C)

Parameter	Symbol	Rating	Unit
Operating Temperature	T _{opr}	-40 ~ +100	°C
Storage Temperature	T _{stg}	-40 ~ +110	°C
Junction temperature	T _j	125	°C
Pulse Forward Current	I _F	500	mA
Power Dissipation	P _d	2.0	w
Junction to heat-sink thermal resistance	R _{th}	15	K/W

Electro-Optical Characteristics (*T_{Ambient}=25°C*)

Parameter	Bin	Symbol	Min	Тур.	Max	Unit	Condition
Luminous Flux ₍₁₎	J5		45		52		
	K1	$oldsymbol{\phi}_{v}$	52		60	lm	
	K2		60		70		
V2 Forward Voltage ₍₂₎ V4	V2		3.25		3.55		
	V3	V_F	3.55		3.85	v	I _F =350mA
	V4		3.85		4.15		-
Viewing Angle ₍₃₎		2θ _{1/2}		100		deg	
Wavelength ₍₄₎	G1		520		525		
	G2	λa	525		530	nm	
	G3		530		535		

Note. 1. Luminous Flux measurement tolerance: ±10%

2. Forward Voltage measurement tolerance: ±0.1V

3. $2\theta_{1/2}$ is the off axis angle from lamp centerline where the luminous intensity is 1/2 of the peak value.

4. Wavelength measurement tolerance: ±1nm

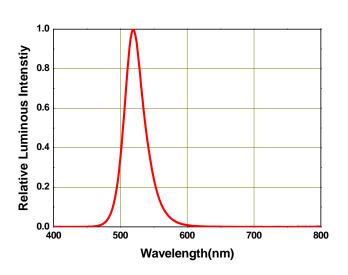
Everlight Electronics Co., Ltd.

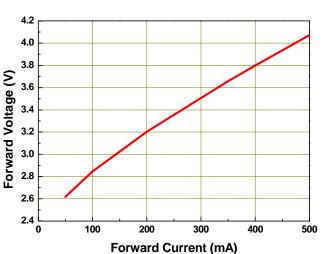
http://www.everlight.com

Rev. 1.0

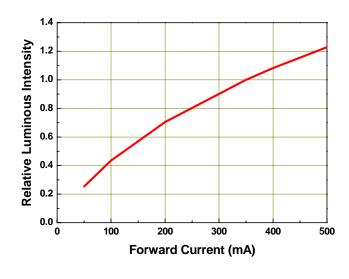
Page: 3 of 10

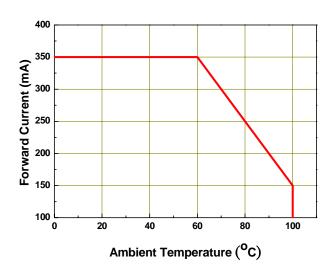
Device No.


Prepared date: Mar 11, 2008


EHP-AX08B/SUG01-P01

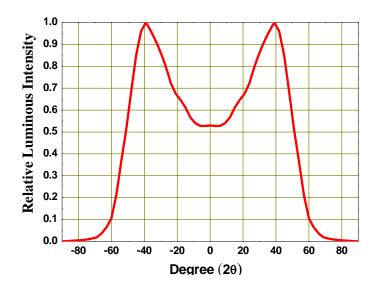
Typical Electro-Optical Characteristics Curves


Relative Spectral Distribution, I_F =350mA, $T_{Ambient}$ =25°C


Forward Voltage vs Forward Current, *T*_{Ambient}=25°C

Relative Luminous Intensity vs Forward Current, *T* _{Ambient}=25°C

Forward Current Derating Curve, Derating based on T_{imax}=125°C


Device No.

Prepared date: Mar 11, 2008

EHP-AX08B/SUG01-P01

Typical Representative Spatial Radiation Pattern

http://www.everlight.com

EHP-AX08B/SUG01-P01

Label explanation

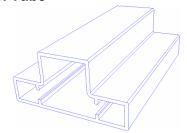
CPN: Customer's Production Number

P/N : Production Number QTY: Packing Quantity

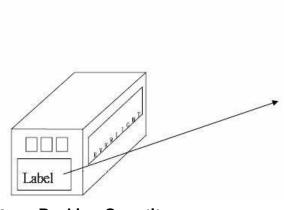
CAT: Ranks

HUE: Dominant Wavelength

REF: Reference

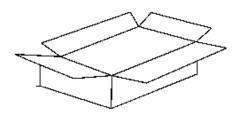

LOT No: Lot Number

MADE IN TAIWAN: Production Place



Tube Packing Specifications

1. Tube


3. Outside Carton

Packing Quantity

- 1. 60 Pcs / Per Tube
- 2. 20 Tubes / Inner Carton
- 3. 12 Inner Cartons / Outside Carton

2. Inner Carton

EHP-AX08B/SUG01-P01

Reliability Test Items and Results

Stress Test	Stress Condition	Stress Duration		
Solderability	Tsol=230°ℂ, 5sec	1 times		
Resistance to Solder Heat	Tsol=260°C, 10sec, 6min	3 times		
Thermal Shock	$H: +110^\circ\mathbb{C}$ 20min. $^{ec{J}}$ 10sec. $^{ec{L}:}-$ 40 $^\circ\mathbb{C}$ 20min.	500 Cycles		
Temperature Cycle	$H: +100^\circ\mathbb{C}$ 30min. ' propt 5min. ' $L: -40^\circ\mathbb{C}$ 30min.	1000 Cycles		
High Temperature/Humidity Reverse Bias	Ta=85℃,RH=85%	1000hours		
High Temperature/Humidity Operation	Ta=85℃ , RH=60%, IF=225mA	1000hours		
High Temperature Storage	Ta=110°C	1000hours		
Low Temperature Storage	Ta=-40°ℂ	1000hours		
Intermittent operational Life	Ta=25°C , IF=1000mA 30mS on/ 2500mS off	1000hours		
High Temperature Operation Life #1	Ta=55℃, IF=350mA	1000hours		
High Temperature Operation Life #2	Ta=85℃, IF=225mA	1000hours		
High Temperature Operation Life #3	Ta=100°C , IF=150mA	1000hours		
Low Temperature Operation Life	Ta=-40°ℂ , IF=350mA	1000hours		
Power Temperature Cycle	$H: +85^\circ\mathbb{C}$ 15min. ' J 5min. ' $L: -40^\circ\mathbb{C}$ 15min. IF=225mA,2min on/off	1000cycles		
ESD Human Body Model	2000V, Interval:0.5sec	3 times		
ESD Machine Model	200V, Interval:0.5sec	3 times		

*Im: BRIGHTNESS ATTENUATE DIFFERENCE(1000hrs) < 50%

*VF: FORWARD VOLTAGE DIFFERENCE < 20%

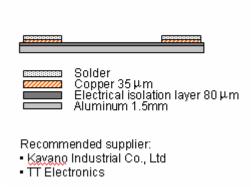
Everlight Electronics Co., Ltd. http://www.everlight.com Rev. 1.0 Page: 7 of 10

EHP-AX08B/SUG01-P01

Precautions For Use

1. Over-current-proof

Though EHP-A08 has conducted ESD protection mechanism, customer must not use the device in reverse and should apply resistors for extra protection. Otherwise slight voltage shift may cause enormous current change and burn out failure would happen.

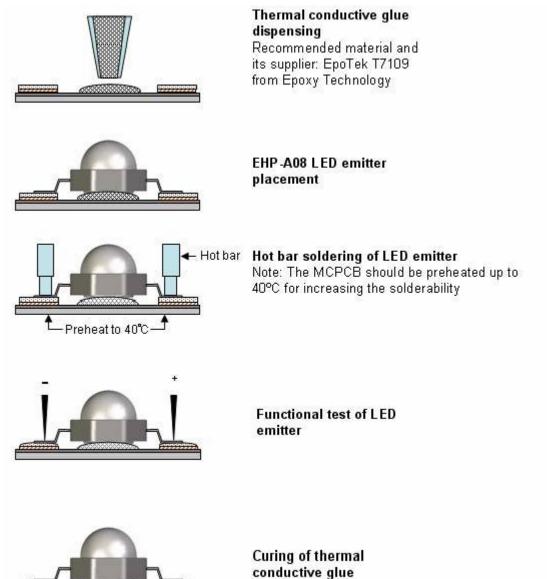

2. Storage

- i. Do not open moisture proof bag before the products are ready to use.
- ii. Before opening the package, the LEDs should be kept at 30℃ or less and 90%RH or less.
- iii. The LEDs should be used within a year.
- iv. After opening the package, the LEDs should be kept at 30°C or less and 70%RH or less.
- v. The LEDs should be used within 168 hours (7 days) after opening the package.
- vi. If the moisture absorbent material (silicone gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.
- vii. Pre-curing treatment : 60±5°C for 24 hours.

3. Thermal Management

i. For maintaining the high flux output and achieving reliability, EHP-A08 series LED package should be mounted on a metal core printed circuit board (MCPCB) with proper thermal connection to dissipate approximately 1W of thermal energy under 350mA operation.

MCPCB structure


- ii. Special thermal designs are also recommended to take in outer heat sink design, such as FR4
 PCB on Aluminum with thermal vias or FPC on Aluminum with thermal conductive adhesive, etc.
- iii. Sufficient thermal management must be conducted, or the die junction temperature will be over the limit under large electronic driving and LED lifetime will decrease critically.

Everlight Electronics Co., Ltd. http://www.everlight.com Rev. 1.0 Page: 8 of 10

EHP-AX08B/SUG01-P01

4. Assembly process flow

Handling Indications: Do not handle the EHP-A08 by the lens at any time during the assembly process. This can cause damage to the optical surfaces or may dislocate the lens if excessive force is applied.

5. Soldering Iron

- i. For prototype builds or small series production runs it is possible to place and solder the LED by hand.
- Dispensing thermal conductive glue or grease on the substrates and follow its curing spec. Press
 LED housing to closely connect LED and substrate.

Everlight Electronics Co., Ltd. http://www.everlight.com Rev. 1.0 Page: 9 of 10

EHP-AX08B/SUG01-P01

- iii. It is recommended to hand solder the leads with a solder tip temperature of 280°C for less than 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal.
- iv. Be careful because the damage of the product is often started at the time of the hand solder.

Everlight Electronics Co., Ltd. http://www.everlight.com Rev. 1.0 Page: 10 of 10