tyco

AXICOM

Electronics

The Best Relaytion

D2n Relay

2 pole telecom relay, non-polarized,
Through Hole Type (THT)
Relay types: non-latching with 1 coil

Features

- Standard DIL relay
- Dimensions $20.3 \times 10.1 \times 10.43 \mathrm{~mm}, 0.800 \times 0.400 \times 0.450$ inch
- Switching and continous current 3 A
- 2 changeover contacts (2 form C / DPDT)
- Single contacts
- Immersion cleanable
- Four different coil sensitivities (150, 200, 400, > 500 mW)
- Surge voltage resistance meets FCC Part 68 requirement: $1.5 \mathrm{kV}(10 / 160 \mu \mathrm{sec})$ between coil and contacts

Typical applications

- Communications equipment
- Office equipment
- Measurement and control equipment
- Entertainment electronics
- Medical Equipment
- Consumer electronics

THT Version

Dimensions

	THT V23105-A5xxx-A201 mm inch	
L	20.2 ± 0.1	0.795 ± 0.004
W	10.0 ± 0.1	0.394 ± 0.004
H	11.43 ± 0.2	$0.450-0.008$
T	3.5 ± 0.3	0.138 ± 0.012
Tw	$0.72-0.2$	$0.028-0.008$
S	0.3 ± 0.1	0.012 ± 0.004

Mounting hole layout
View onto the component side of the PCB (top view)

Basic grid 2.54 mm

Terminal assignment
Relay - top view

Coil Data (values at $23^{\circ} \mathrm{C}$)						
Nominal voltage Unom Vdc	Operate Minimum voltage U_{1} Vdc	age range Maximum voltage $U_{\text {II }}$ Vdc	Release/ reset voltage Minimum Vdc	Nominal power consumption mW	Resistance $\Omega / \pm 10 \%$	Coil number
150 mW nominal power consumption						
5	4.0	13.0	0.25	150	167	001
6	4.8	15.6	0.30	150	240	002
9	7.2	23.4	0.45	150	540	006
12	9.6	31.2	0.60	150	960	003
24	19.2	59.5	1.20	165	3480	005
200 mW nominal power consumption						
3	2.1	6.7	0.15	200	45	308
5	3.5	11.2	0.25	200	125	301
6	4.2	13.5	0.30	200	180	302
9	6.3	20.3	0.45	200	405	306
12	8.4	27.0	0.60	200	720	303
24	16.8	54.1	1.20	200	2880	305
48	33.6	108.3	2.40	200	11520	307

400 mW nominal power consumption

5	3.5	7.9	0.25	400	62	401
6	4.2	9.5	0.30	400	90	402
9	6.3	14.3	0.45	400	203	406
12	8.4	19.1	0.60	400	360	403
24	16.8	38.3	1.20	400	1440	405
48	33.6	76.6	2.40	400	5760	407

$>500 \mathrm{~mW}$ nominal power consumption

5	3.5	6.3	0.25	695	36	501
6	4.2	8.9	0.30	515	50	502
9	6.3	12.5	0.45	580	140	506
12	8.4	17.8	0.60	515	280	503
24	16.8	34.4	1.20	550	1050	505
48	33.6	67.3	2.40	575	4000	507

$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\text {II }}=\quad$ Maximum continous voltage at 23°
The operating voltage limits U_{1} and $U_{\|}$depend on
the temperature according to the formula:

$U_{1 \text { tamb }}=$	$\begin{aligned} & \mathrm{K}_{1} \cdot \mathrm{U}_{123^{\circ} \mathrm{C}} \\ & \text { and } \end{aligned}$
$U_{\text {Il tamb }}=$	$\mathrm{K}_{11} \cdot \mathrm{U}_{1123^{\circ} \mathrm{C}}$
$t_{\text {amb }}$	= Ambient temperature
$U_{\text {Itamb }}$	$=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
$U_{\text {II tamb }}$	$=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
$k_{1}, k_{\text {II }}$	$=$ Factors (dependent on temperature), see diagram

Coil versions, BT 47 type / specification T4563 C (current tested)

Nominal voltage	Operating current	Nominal power consumption	Resistance	British Telecom Code	Coil number
Vdc	mA	mW	$\Omega / \pm 10 \%$		

Contact Data

Number of contacts and type	2 changeover contacts
Contact assembly	single contacts
Contact material	Silver-nickel, gold-covered
Limiting continuous current at max. ambient temperature	3 A
Maximum switching current	3 A
Maximum swichting voltage	220 Vdc
	250 Vac
Maximum switching capacity	$60 \mathrm{~W}, 125 \mathrm{VA}$
Thermoelectric potential	$>10 \mu \mathrm{~V}$
Minimum switching voltage	$100 \mu \mathrm{~V}$
Initial contact resistance / measuring condition: $10 \mathrm{~mA} / 20 \mathrm{mV}$	$<100 \mathrm{~m} \Omega$
Electrical endurance at $230 \mathrm{Vac} / 0.5 \mathrm{~A}$	typ. 3.0×10^{5} operations
at $6 \mathrm{Vdc} / 0.1 \mathrm{~A}$	typ. 2.0×10^{6} operations
at $30 \mathrm{Vdc} / 1 \mathrm{~A}$	typ. 5.0×10^{5} operations
at $30 \mathrm{Vdc} / 2 \mathrm{~A}$	typ. 1.0×10^{5} operations
Mechanical endurance	typ. 15.0×10^{6} operations
UL contact ratings	$30 \mathrm{Vdc} / 1.0 \mathrm{~A}$
	$100 \mathrm{Vdc} / 0.3 \mathrm{~A}$
	$125 \mathrm{Vac} / 0.5 \mathrm{~A}$ for 150 mW and 200 mW coil
	$125 \mathrm{Vac} / 1.0 \mathrm{~A}$ for 400 mW and 500 mW coil

Insulation	
Insulation resistance at 500 Vdc	$>10^{9} \Omega$
Dielectric test voltage (1 min) between coil and contacts between adjacent contact sets between open contacts	1000 Vrms 750 Vrms 750 Vrms
Surge voltage resistance according to FCC $68(10 / 160 \mu \mathrm{~s})$ between coil and contacts between adjacent contact sets between open contacts	$\begin{aligned} & 1500 \mathrm{~V} \\ & 1500 \mathrm{~V} \\ & 1500 \mathrm{~V} \end{aligned}$

High Frequency Data	
Capacitance between coil and contacts between adjacent contact sets between open contacts	$\max .2 \mathrm{pF}$ $\max .1 .5 \mathrm{pF}$ $\max .1 \mathrm{pF}$
RF Characteristics	
Isolation at $100 / 900 \mathrm{MHz}$	$-39.0 \mathrm{~dB} /-20.7 \mathrm{~dB}$
Insertion loss at $100 / 900 \mathrm{MHz}$	$-0.02 \mathrm{~dB} /-0.27 \mathrm{~dB}$
V.S.W.R. at $100 / 900 \mathrm{MHz}$	$1.04 / 1.40$

General data

Operate time at $U_{\text {nom }}$ typ. / max.	$5 \mathrm{~ms} / 7 \mathrm{~ms}$
Release time without diode in parallel, typ. / max.	$4 \mathrm{~ms} / 6 \mathrm{~ms}$
Release time with diode in parallel, typ. / max.	$7 \mathrm{~ms} / 10 \mathrm{~ms}$
Bounce time at closing contact, typ. / max.	$3 \mathrm{~ms} / 5 \mathrm{~ms}$
Maximum switching rate without load	20 operations/s
Ambient temperature	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
150 and 200 mW coil	$-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$
400 mW coil	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
500 mW coil	$<100 \mathrm{~K} / \mathrm{W}$
Thermal resistance	$105^{\circ} \mathrm{C}$
Maximum permissible coil temperature	10 g
Vibration resistance (function)	10 to 55 Hz
Shock resistance, half sinus, 11 ms	10 g (function)
Degree of protection / Environmental protection	$40 \mathrm{~g} \mathrm{(damage)}$
Needle flame test	immersion cleanable, IP $67 / \mathrm{RT}$ III
Mounting position	application time $20 \mathrm{~s}, \mathrm{burning}$ time $<15 \mathrm{~s}$
Processing information	any
Weight (mass)	Ultrasonic cleaning is not recommended
Resistance to soldering heat	max. 2.5 g

All data refers to $23^{\circ} \mathrm{C}$ unless otherwise specified.

Packing

Tube for THT version - 25 relays per tube, 1000 relays per box

Ordering Information

Relay Code	Tyco Part Number	Relay Code	Tyco Part Number
V23105A5001A201	$8-1393792-5$	V23105A5406A201	$1-1393793-0$
V23105A5002A201	$8-1393792-7$	V23105A5407A201	$1-1393793-1$
V23105A5003A201	$8-1393792-8$	V23105A5475A201	$1-1393793-2$
V23105A5005A201	$9-1393792-0$	V23105A5476A201	$1-1393793-3$
V23105A5006A201	$9-1393792-1$	V23105A5477A201	$1-1393793-4$
V23105A5301A201	$9-1393792-3$	V23105A5478A201	$1-1393793-5$
V23105A5302A201	$9-1393792-5$	V23105A5479A201	$3-1393794-0$
V23105A5303A201	$9-1393792-7$	V23105A5501A201	$1-1393793-6$
V23105A5305A201	$9-1393792-9$	V23105A5502A201	$1-1393793-8$
V23105A5306A201	$0-1393793-2$	V23105A5503A201	$1-1393793-9$
V23105A5307A201	$0-1393793-3$	V23105A5505A201	$2-1393793-1$
V23105A5308A201	$0-1393793-5$	V23105A5506A201	$2-1393793-3$
V23105A5401A201	$0-1393793-6$	V23105A5507A201	$2-1393793-4$
V23105A5402A201	$0-1393793-7$		
V23105A5403A201	$0-1393793-8$		
V23105A5405A201	$0-1393793-9$		

Ordering system:
V23105A5xxxA201

IM Relays

$4^{\text {th }}$ generation slim line - low profile polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 1.5 ... 24 V , coil power consumption of $140 \ldots 200 \mathrm{~mW}$, latching relays with 1 coil 100 mW . The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to 60 W/62,5 VA. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The IM relay is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $10 \times 6 \mathrm{~mm}$ board space and 5.65 mm height.

P2 Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 140 mW , latching relays with 1 coil 70 mW . The P2 Relay is available as through hole or surface mount type and capable to switch currents up to 5 A. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FX Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} /$ o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, $140 \ldots 300 \mathrm{~mW}$ for the standard version, latching relays with 1 coil 100 mW . The FX2 relay is available as through hole type and capable to switch loads up to 60 W/62,5 VA. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FX2 is CECC/ IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and $10,7 \mathrm{~mm}$ height.

FT2 / FU2 Relays

$3^{\text {rd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V , coil power consumption $200 \ldots 300 \mathrm{~mW}$. Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FT2/FU2 is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FP1 Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW .. The FP1 Relay is available as through hole type and capable to switch loads up to 30 W/62,5 VA. Dielectric strength fulfills FCC part 68 (1,5 kV - 10 / $160 \mu \mathrm{~s})$. The FP2 is CECC/IECQ approved. Dimensions approx. $14 \times 9 \mathrm{~mm}$ board space and 5 mm height.

MT2 / MT4

$2^{\text {nd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ and $4 \mathrm{c} / \mathrm{o}$ telecom and signal relay with bifurcated contacts. Nominal voltage range from 4.5 ... 48 V , coil power consumption 150/200/300/400 and 550 mW , and 300 mW (MT4). Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$ for both and the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s}$) the MT4 only.
Dimensions MT2 approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height, MT4 approx. $20 \times 15 \mathrm{~mm}$ board space and 11 mm height.

D2n Relays

$2^{\text {nd }}$ generation non polarized $2 \mathrm{c} / \mathrm{o}$ relay for telecom and various other applications. Nominal voltage range from 3 ... 48 V , coil power consumption from 150 500 mW . The D2n relay is capable to switch currents up to 3 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

P1 Relays

Extremely sensitive, polarized $1 \mathrm{c} / \mathrm{o}$ relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 65 mW , latching relays with 1 coil 30 mW . The P 1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $13 \times 7,6 \mathrm{~mm}$ board space and 7 mm height for THT or 8 mm height for SMT version.

W11 Relays

Low cost, non polarized $1 \mathrm{c} /$ o relay for various applications. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 450 mW , sensitive versions 200 mW . The W11 relay is capable to switch currents up to 3 A . Dielectric strength 1000 Vrms. Dimensions approx. $15,6 \times 10,6 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

Reed Relays

High sensitive, non polarized relay for telecom and various other applications, available with 1 n/o, 2 n/o or 1c/o contacts. Nominal voltage range from $5 \ldots 24 \mathrm{~V}$, coil power consumption $50 \ldots 280 \mathrm{~mW}$ for $1 \mathrm{n} / \mathrm{o}$ and $125 \ldots 280 \mathrm{~mW}$ for $2 \mathrm{n} / \mathrm{o}$ or $1 \mathrm{c} / \mathrm{o}$ versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc. Dimensions approx. $19,3 \times 7 \mathrm{~mm}$ board space and 5 ... $7,5 \mathrm{~mm}$ height for DIP or $19,8 \times 5 \mathrm{~mm}$ board space and $7,8 \mathrm{~mm}$ height for SIL version.

Cradle Relays

Extremely reliable and mature relay family of $1^{\text {st }}$ generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from $1,5 \mathrm{Vdc}$ to 220 Vac . Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A . Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. 19×24 to $19 \times 35 \mathrm{~mm}$ board space and 30 mm height.

Other Relays

We offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 / V23031 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series). Accessories like sockets, hold down springs, etc. optional.

HF3 Relay

High performance low cost RF relay with excellent RF characteristics. Available with an impedance of 50 and 75 Ohm. Suitable for frequencies up to 3 GHz . Actually smallest RF relay available combining small size, excellent RF performance and SMD solderability. Available as non latching or latching relay with 1 or 2 coils and a nominal coil voltage range from 3 ... 24 V , coil power consumption 140 mW , latching relays with 1 coil 70 mW . Dimensions $14.6 \times 7.3 \times 10 \mathrm{~mm}$.

AXICOM

Electronics

Tyco Electronics AXICOM Ltd.
Seestrasse 295 -P.O. Box 220
CH-8804 Au-Wädenswil / Switzerland
Phone +41 17829111
Fax +4117829080
E-mail: axicom@tycoelectronics.com

Tyco Electronics AMP GmbH
Paulsternstrasse 26
D-13629 Berlin / Germany
Phone +49 3038638260
Fax +49 3038638569
E-mail: axicom@tycoelectronics.com

Tyco Electronics EC Trutnov s.r.o.
Komenského 821
CZ-541 01 Trutnov / Czech Republic
E-mail: axicom@tycoelectronics.com

Tyco Electronics Corporation POB 3608,
Harrisburg, PA 17105, USA

